Weight Agnostic Neural Networks

Adam Gaier^{1,2}, David Ha¹

1 Google Brain, 2 Inria / CNRS / Université de Lorraine / Bonn-Rhein-Sieg University of Applied Sciences

Innate abilities in animals

Innate abilities in machines

Super-resolution

Inpainting

Corrupted

Deep image prior

Corrupted

Denoising

Deep image prior

Corrupted

Deep image prior

Corrupted

Inpainting

Deep image prior

To what extent can neural net architectures <u>alone</u> encode solutions to tasks?

Neural Architecture Search

Searching for trainable networks

- Architectures, once trained, outperform hand designed networks
- Expensive -- training of network required to judge performance
- Solution is still encoded in weights of network, not in architecture

Searching for Architectures

Elsken, T., Metzen, J. H., & Hutter, F. (2018). Neural architecture search: A survey. arXiv preprint arXiv:1808.05377

Searching for Architectures

Elsken, T., Metzen, J. H., & Hutter, F. (2018). Neural architecture search: A survey. arXiv preprint arXiv:1808.05377

How can we search for architectures...*not* weights?

Search without Training

Assume weights are drawn from a particular distribution

• Search for architecture to perform given weights from this distribution

Replace inner loop training with sampling

- Draw new weights from distribution at each rollout
- Judge network on zero-shot performance

Weight Sharing

Single shared weight value used for <u>all</u> connections

- Weight value selected from distribution at each rollout
- Reduces number of parameters of network to 1
 - Reliable expected reward of topology

Architecture search

- Explore space of network topologies
- Judge network architecture based on performance over a series of rollouts

Topology Search

1.) Initialize

Create population of minimal networks.

2.) Evaluate

Test with range of shared weight values.

3.) Rank *Rank by performance and complexity*

4.) Vary

Create new population by varying best networks.

WANNs find solutions in variety of RL tasks

WANNs perform with and without training

Swing Up	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	57 ± 121	515 ± 58	723 ± 16	932 ± 6
Fixed Topology	21 ± 43	7 ± 2	8 ± 1	918 ± 7
Biped	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	-46 ± 54	51 ± 108	261 ± 58	332 ± 1
Fixed Topology	-129 ± 28	-107 ± 12	-35 ± 23	347 ± 1
CarRacing	Random Weights	Random Shared Weight	Tuned Shared Weight	Tuned Weights
WANN	-69 ± 31	375 ± 177	608 ± 161	893 ± 74
Fixed Topology	-82 ± 13	-85 ± 27	-37 ± 36	906 ± 21

ANN Bipedal Walker (2760 connections, weights)

WANN Bipedal Walker (44 connections, 1 weight)

Can we find WANNs outside of reinforcement learning domains?

WANN	Test Accuracy
Random Weight	<i>82.0%</i> ± <i>18.7%</i>
Ensemble Weights	91.6%
Tuned Weight	91.9%
Trained Weights	94.2%

ANN	Test Accuracy
Linear Regression	91.6% [50]
Two-Layer CNN	99.3% [12]

Searching for Building Blocks

First steps toward a different kind of architecture search

- Network architectures with innate biases can perform a variety of tasks
- ...and these biases can be found through search

Weight tolerance as a heuristic for new building blocks

- ConvNets and LSTMs can work even untrained
- Finding novel building blocks at least as important as new arrangements of those which already exist

interactive article @: weightagnostic.github.io

poster @: wednesday 10:45